Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
2.
PLoS Pathog ; 19(12): e1011853, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100526

ABSTRACT

Engineered T cells hold great promise to become part of an effective HIV cure strategy, but it is currently unclear how best to redirect T cells to target HIV. To gain insight, we generated engineered T cells using lentiviral vectors encoding one of three distinct HIV-specific T cell receptors (TCRs) or a previously optimized HIV-targeting chimeric antigen receptor (CAR) and compared their functional capabilities. All engineered T cells had robust, antigen-specific polyfunctional cytokine profiles when mixed with artificial antigen-presenting cells. However, only the CAR T cells could potently control HIV replication. TCR affinity enhancement did not augment HIV control but did allow TCR T cells to recognize common HIV escape variants. Interestingly, either altering Nef activity or adding additional target epitopes into the HIV genome bolstered TCR T cell anti-HIV activity, but CAR T cells remained superior in their ability to control HIV replication. To better understand why CAR T cells control HIV replication better than TCR T cells, we performed a time course to determine when HIV-specific T cells were first able to activate Caspase 3 in HIV-infected targets. We demonstrated that CAR T cells recognized and killed HIV-infected targets more rapidly than TCR T cells, which correlates with their ability to control HIV replication. These studies suggest that the speed of target recognition and killing is a key determinant of whether engineered T cell therapies will be effective against infectious diseases.


Subject(s)
HIV Infections , HIV-1 , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , HIV Infections/therapy , Virus Replication
3.
Cancer Immunol Res ; 11(11): 1524-1537, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37649085

ABSTRACT

Natural killer (NK) cells are frequently expanded for the clinic using irradiated, engineered K562 feeder cells expressing a core transgene set of membrane-bound (mb) IL15 and/or mbIL21 together with 41BBL. Prior comparisons of mbIL15 to mbIL21 for NK expansion lack comparisons of key attributes of the resulting NK cells, including their high-dimensional phenotype, polyfunctionality, the breadth and potency of cytotoxicity, cellular metabolism, and activity in xenograft tumor models. Moreover, despite multiple rounds of K562 stimulation, studies of sequential use of mbIL15- and mbIL21-based feeder cells are absent. We addressed these gaps and found that using mbIL15- versus mbIL21-based feeder cells drove distinct phenotypic and functional profiles. Feeder cells expressing mbIL15 alone drove superior functionality by nearly all measures, whereas those expressing mbIL21 alone drove superior yield. In combination, most attributes resembled those imparted by mbIL21, whereas in sequence, NK yield approximated that imparted by the first cytokine, and the phenotype, transcriptome, and function resembled that driven by the second cytokine, highlighting the plasticity of NK cell differentiation. The sequence mbIL21 followed by mbIL15 was advantageous in achieving significant yields of highly functional NK cells that demonstrated equivalent in vivo activity to those expanded by mbIL15 alone in two of three xenograft models. Our findings define the impact of mbIL15 versus mbIL21 during NK expansion and reveal a previously underappreciated tradeoff between NK yield and function for which sequential use of mbIL21-based followed by mbIL15-based feeder cells may be the optimal approach in many settings.


Subject(s)
Interleukin-15 , Killer Cells, Natural , Humans , Interleukin-15/metabolism , K562 Cells , Killer Cells, Natural/metabolism , Cell Proliferation , Cytokines/metabolism
4.
Res Involv Engagem ; 9(1): 39, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291622

ABSTRACT

INTRODUCTION: Achieving effective community engagement has been an objective of U.S. National Institutes of Health-funded HIV research efforts, including participation of persons with HIV. Community Advisory Boards (CABs) have remained the predominant model for community engagement since their creation in 1989. As HIV cure-directed research efforts have grown into larger academic-industry partnerships directing resources toward both basic and clinical research under the Martin Delaney Collaboratories (MDC), community input models have also evolved. The BEAT-HIV MDC Collaboratory, based at The Wistar Institute in Philadelphia, United States, implemented a three-part model for community engagement that has shown success in providing greater impact for community engagement across basic, biomedical, and social sciences research efforts. DISCUSSION: In this paper, we review the case study of the formation of the BEAT-HIV Community Engagement Group (CEG) model, starting with the historical partnership between The Wistar Institute as a basic research center and Philadelphia FIGHT as a not-for-profit community-based organization (CBO), and culminating with the growth of community engagement under the BEAT-HIV MDC. Second, we present the impact of a cooperative structure including a Community Advisory Board (CAB), CBO, and researchers through the BEAT-HIV CEG model, and highlight collaborative projects that demonstrate the potential strengths, challenges, and opportunities of this model. We also describe challenges and future opportunities for the use of the CEG model. CONCLUSIONS: Our CEG model integrating a CBO, CAB and scientists could help move us towards the goal of effective, equitable and ethical engagement in HIV cure-directed research. In sharing our lessons learned, challenges and growing pains, we contribute to the science of community engagement into biomedical research efforts with an emphasis on HIV cure-directed research. Our documented experience with implementing the CEG supports greater discussion and independent implementation efforts for this model to engage communities into working teams in a way we find a meaningful, ethical, and sustainable model in support of basic, clinical/biomedical, social sciences and ethics research.


HIV biomedical research groups have prioritized community support and representation as exemplified by the creation of Community Advisory Boards (CABs). Most CABs bring diverse stakeholders to advise on research objectives as part of their activities. The BEAT-HIV Delaney Collaboratory, based at The Wistar Institute in Philadelphia, is a research program created in 2016 to advance HIV cure research. To better engage communities beyond the CAB, the BEAT-HIV Delaney Collaboratory created a Community Engagement Group (CEG) model composed of three distinct components. First, the involvement of a community-based organization (CBO) introduces the historical know-how and relationship with the community. Philadelphia FIGHT fulfills the CBO role as a provider of primary care, education, advocacy, and research support for persons with HIV. Second, the BEAT-HIV CAB provides individual experiences and community input into HIV cure research and gives updates to the broader community about the status of research. Third, basic, clinical/biomedical, and social scientists implement the scientific goals of the BEAT-HIV Collaboratory. In this paper, we aimed to highlight the strengths, challenges, lessons learned, and opportunities of the BEAT-HIV CEG model. We also present examples of collaborative community engagement projects. Our paper contributes to the literature on novel community engagement approaches beyond the CAB. Based on our experience to date using the CEG, a multi-part community engagement model could help move us towards the goal of inclusive, effective, equitable, and ethical engagement in HIV cure research.

5.
Mol Ther ; 31(7): 2120-2131, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37081789

ABSTRACT

IL-17-producing antigen-specific human T cells elicit potent antitumor activity in mice. Yet, refinement of this approach is needed to position it for clinical use. While activation signal strength regulates IL-17 production by CD4+ T cells, the degree to which T cell antigen receptor (TCR) and costimulation signal strength influences Th17 immunity remains unknown. We discovered that decreasing TCR/costimulation signal strength by incremental reduction of αCD3/costimulation beads progressively altered Th17 phenotype. Moreover, Th17 cells stimulated with αCD3/inducible costimulator (ICOS) beads produced more IL-17A, IFNγ, IL-2, and IL-22 than those stimulated with αCD3/CD28 beads. Compared with Th17 cells stimulated with the standard, strong signal strength (three beads per T cell), Th17 cells propagated with 30-fold fewer αCD3/ICOS beads were less reliant on glucose and favored the central carbon pathway for bioenergetics, marked by abundant intracellular phosphoenolpyruvate (PEP). Importantly, Th17 cells stimulated with weak αCD3/ICOS beads and redirected with a chimeric antigen receptor that recognizes mesothelin were more effective at clearing human mesothelioma. Less effective CAR Th17 cells generated with high αCD3/ICOS beads were rescued by overexpressing phosphoenolpyruvate carboxykinase 1 (PCK1), a PEP regulator. Thus, Th17 therapy can be improved by using fewer activation beads during manufacturing, a finding that is cost effective and directly translatable to patients.


Subject(s)
Inducible T-Cell Co-Stimulator Protein , Interleukin-17 , Receptors, Chimeric Antigen , Animals , Humans , Mice , CD28 Antigens/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukin-17/metabolism , Lymphocyte Activation , Phosphoenolpyruvate/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Signal Transduction , Th17 Cells/metabolism
6.
Blood Adv ; 7(15): 4049-4063, 2023 08 08.
Article in English | MEDLINE | ID: mdl-36763539

ABSTRACT

Golgi membrane protein 1 (GOLM1) is aberrantly expressed in many types of solid tumors and contributes to cancer development; however, its role in hematopoietic and lymphoid neoplasms remains unknown. Here, we report that GOLM1 was significantly upregulated in anaplastic large cell lymphoma (ALCL), particularly in anaplastic lymphoma kinase-positive (ALK+) ALCL. Mechanistically, the expression of GOLM1 was induced by nucleophosmin-ALK in both ALK-transformed T cells and ALCL cell lines through AKT/mTOR pathway. Knockdown of GOLM1 expression led to a reduction in the growth and viability of ALCL cells with increased spontaneous apoptosis, whereas ectopic expression of GOLM1 protected ALCL cells from apoptosis induced by staurosporine treatment. Moreover, GOLM1 directly interacted with B-cell lymphoma-extra large protein (a crucial anti-apoptosis regulator) and significantly prolonged its stability. Introduction of GOLM1 promoted ALK+ ALCL cells colony formation in vitro and tumor growth in a murine xenograft model. Taken together, our findings demonstrate, to our knowledge, for the first time that GOLM1 plays a critical role in suppressing apoptosis and promoting the progression of ALK+ ALCL and provide evidence that GOLM1 is a potential biomarker and therapeutic target in ALK-induced hematological malignancies.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Receptor Protein-Tyrosine Kinases , Humans , Mice , Animals , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Anaplastic Lymphoma Kinase , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/metabolism , Lymphoma, Large-Cell, Anaplastic/pathology , Cell Line, Tumor , Staurosporine , Membrane Proteins/genetics
7.
STAR Protoc ; 3(4): 101784, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36386869

ABSTRACT

It is technically challenging to generate large doses of regulatory T cells (Tregs) engineered to express a chimeric antigen receptor (CAR) in non-human primates (NHP). Here, we have optimized the manufacturing of CAR Tregs by stringent sorting of Tregs, stimulation by artificial antigen-presenting cells, transduction by simian tropic lentiviral vectors, and antigen-specific expansion. The result of this method is highly suppressive CAR Tregs for use in a pre-clinical, large animal model of transplant tolerance. For complete details on the use and execution of this protocol, please refer to Ellis et al. (2022).


Subject(s)
Receptors, Chimeric Antigen , Animals , Receptors, Chimeric Antigen/genetics , Antigen-Presenting Cells , T-Lymphocytes, Regulatory , Primates , Transplantation Tolerance
8.
J Immunol ; 209(5): 864-873, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36130133

ABSTRACT

HIV-1-specific CD4+ T cells (TCD4+s) play a critical role in controlling HIV-1 infection. Canonically, TCD4+s are activated by peptides derived from extracellular ("exogenous") Ags displayed in complex with MHC class II (MHC II) molecules on the surfaces of "professional" APCs such as dendritic cells (DCs). In contrast, activated human TCD4+s, which express MHC II, are not typically considered for their APC potential because of their low endocytic capacity and the exogenous Ag systems historically used for assessment. Using primary TCD4+s and monocyte-derived DCs from healthy donors, we show that activated human TCD4+s are highly effective at MHC II-restricted presentation of an immunodominant HIV-1-derived epitope postinfection and subsequent noncanonical processing and presentation of endogenously produced Ag. Our results indicate that, in addition to marshalling HIV-1-specific immune responses during infection, TCD4+s also act as APCs, leading to the activation of HIV-1-specific TCD4+s.


Subject(s)
HIV Seropositivity , HIV-1 , Antigen Presentation , CD4-Positive T-Lymphocytes , Dendritic Cells , Epitopes , Histocompatibility Antigens Class II , Humans , Peptides , T-Lymphocytes
9.
Sci Transl Med ; 14(660): eabo6135, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36044599

ABSTRACT

T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.


Subject(s)
Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , T-Lymphocytes , Antigens, Neoplasm , Cell Line, Tumor , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive/methods , Proteomics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/therapeutic use
10.
Cell Rep Med ; 3(5): 100614, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35551746

ABSTRACT

Adoptive transfer of chimeric antigen receptor regulatory T cells (CAR Tregs) is a promising way to prevent allograft loss without the morbidity associated with current therapies. Non-human primates (NHPs) are a clinically relevant model to develop transplant regimens, but manufacturing and engraftment of NHP CAR Tregs have not been demonstrated yet. Here, we describe a culture system that massively expands CAR Tregs specific for the Bw6 alloantigen. In vitro, these Tregs suppress in an antigen-specific manner without pro-inflammatory cytokine secretion or cytotoxicity. In vivo, Bw6-specific CAR Tregs preferentially traffic to and persist in bone marrow for at least 1 month. Following transplant of allogeneic Bw6+ islets and autologous CAR Tregs into the bone marrow of diabetic recipients, CAR Tregs traffic to the site of islet transplantation and maintain a phenotype of suppressive Tregs. Our results establish a framework for the optimization of CAR Treg therapy in NHP disease models.


Subject(s)
Isoantigens , Receptors, Chimeric Antigen , Adoptive Transfer , Animals , Macaca , Receptors, Chimeric Antigen/genetics , T-Lymphocytes, Regulatory
12.
Cancer Res ; 81(12): 3241-3254, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33619116

ABSTRACT

Fusion genes including NPM-ALK can promote T-cell transformation, but the signals required to drive a healthy T cell to become malignant remain undefined. In this study, we introduce NPM-ALK into primary human T cells and demonstrate induction of the epithelial-to-mesenchymal transition (EMT) program, attenuation of most T-cell effector programs, reemergence of an immature epigenomic profile, and dynamic regulation of c-Myc, E2F, and PI3K/mTOR signaling pathways early during transformation. A mutant of NPM-ALK failed to bind several signaling complexes including GRB2/SOS, SHC1, SHC4, and UBASH3B and was unable to transform T cells. Finally, T-cell receptor (TCR)-generated signals were required to achieve T-cell transformation, explaining how healthy individuals can harbor T cells with NPM-ALK translocations. These findings describe the fundamental mechanisms of NPM-ALK-mediated oncogenesis and may serve as a model to better understand factors that regulate tumor formation. SIGNIFICANCE: This investigation into malignant transformation of T cells uncovers a requirement for TCR triggering, elucidates integral signaling complexes nucleated by NPM-ALK, and delineates dynamic transcriptional changes as a T cell transforms.See related commentary by Spasevska and Myklebust, p. 3160.


Subject(s)
Cell Dedifferentiation , Cell Transformation, Neoplastic/pathology , Cellular Reprogramming , Lymphoma, Large-Cell, Anaplastic/pathology , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Apoptosis , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Humans , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/immunology , Lymphoma, Large-Cell, Anaplastic/metabolism , Phosphorylation , Protein-Tyrosine Kinases/genetics , Receptors, Antigen, T-Cell/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
13.
Nat Rev Genet ; 22(7): 427-447, 2021 07.
Article in English | MEDLINE | ID: mdl-33603158

ABSTRACT

Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.


Subject(s)
Genetic Engineering , Immunotherapy , T-Lymphocytes/immunology , Animals , Genetic Engineering/trends , Humans , Transgenes
14.
J Infect Dis ; 223(12 Suppl 2): 38-45, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33586770

ABSTRACT

HIV-infected individuals successfully controlling viral replication via antiretroviral therapy often have a compromised HIV-specific T-cell immune response due to the lack of CD4 T-cell help, viral escape, T-cell exhaustion, and reduction in numbers due to the withdrawal of cognate antigen. A successful HIV cure strategy will likely involve a durable and potent police force that can effectively recognize and eliminate remaining virus that may emerge decades after an individual undergoes an HIV cure regimen. T cells are ideally suited to serve in this role, but given the state of the HIV-specific T-cell response, it is unclear how to best restore HIV-specific T-cell activity prior initiation of a HIV cure strategy. Here, we review several strategies of generating HIV-specific T cells ex vivo that are currently being tested in the clinic and discuss how infused T cells can be part of an HIV cure strategy.


Subject(s)
Adoptive Transfer , CD4-Positive T-Lymphocytes/immunology , HIV Infections/therapy , HIV-1/physiology , Adaptive Immunity , Animals , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans
15.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33571163

ABSTRACT

BackgroundWe conducted a phase I clinical trial that infused CCR5 gene-edited CD4+ T cells to determine how these T cells can better enable HIV cure strategies.MethodsThe aim of trial was to develop RNA-based approaches to deliver zinc finger nuclease (ZFN), evaluate the effect of CCR5 gene-edited CD4+ T cells on the HIV-specific T cell response, test the ability of infused CCR5 gene-edited T cells to delay viral rebound during analytical treatment interruption, and determine whether individuals heterozygous for CCR5 Δ32 preferentially benefit. We enrolled 14 individuals living with HIV whose viral load was well controlled by antiretroviral therapy (ART). We measured the time to viral rebound after ART withdrawal, the persistence of CCR5-edited CD4+ T cells, and whether infusion of 10 billion CCR5-edited CD4+ T cells augmented the HIV-specific immune response.ResultsInfusion of the CD4+ T cells was well tolerated, with no serious adverse events. We observed a modest delay in the time to viral rebound relative to historical controls; however, 3 of the 14 individuals, 2 of whom were heterozygous for CCR5 Δ32, showed post-viral rebound control of viremia, before ultimately losing control of viral replication. Interestingly, only these individuals had substantial restoration of HIV-specific CD8+ T cell responses. We observed immune escape for 1 of these reinvigorated responses at viral recrudescence, illustrating a direct link between viral control and enhanced CD8+ T cell responses.ConclusionThese findings demonstrate how CCR5 gene-edited CD4+ T cell infusion could aid HIV cure strategies by augmenting preexisting HIV-specific immune responses.REGISTRATIONClinicalTrials.gov NCT02388594.FundingNIH funding (R01AI104400, UM1AI126620, U19AI149680, T32AI007632) was provided by the National Institute of Allergy and Infectious Diseases (NIAID), the National Institute on Drug Abuse (NIDA), the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). Sangamo Therapeutics also provided funding for these studies.


Subject(s)
Anti-Retroviral Agents/administration & dosage , CD4-Positive T-Lymphocytes , Gene Editing , HIV Infections , HIV-1/physiology , Lymphocyte Transfusion , Receptors, CCR5 , Virus Replication/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , Female , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/therapy , Humans , Male , Middle Aged , Receptors, CCR5/genetics , Receptors, CCR5/immunology , Viral Load/genetics , Viral Load/immunology , Virus Replication/drug effects , Virus Replication/genetics
16.
Blood Adv ; 5(4): 1069-1080, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33599743

ABSTRACT

Expression of programmed cell death protein 1 (PD-1) on natural killer (NK) cells has been difficult to analyze on human NK cells. By testing commercial clones and novel anti-PD-1 reagents, we found expression of functional PD-1 on resting human NK cells in healthy individuals and reconstituting NK cells early after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Peripheral blood samples from healthy individuals and transplant recipients were stained for PD-1 expression using the commercial anti-PD-1 clone PD1.3.1.3, fluorescein isothiocyanate (FITC)-labeled pembrolizumab, or an FITC-labeled single-chain variable fragment (scFv) reagent made from pembrolizumab. These reagents identified low yet consistent basal PD-1 expression on resting NK cells, a finding verified by finding lower PD-1 transcripts in sorted NK cells compared with those in resting or activated T cells. An increase in PD-1 expression was identified on paired resting NK cells after allo-HSCT. Blockade of PD-1 on resting NK cells from healthy donors with pembrolizumab did not enhance NK function against programmed death-ligand 1 (PD-L1)-expressing tumor lines, but blocking with its scFv derivative resulted in a twofold increase in NK cell degranulation and up to a fourfold increase in cytokine production. In support of this mechanism, PD-L1 overexpression of K562 targets suppressed NK cell function. Interleukin-15 (IL-15) activity was potent and could not be further enhanced by PD-1 blockade. A similar increase in function was observed with scFv PD-1 blockade on resting blood NK cells after allo-HSCT. We identify the functional importance of the PD-1/PD-L1 axis on human NK cells in which blockade or activation to overcome inhibition will enhance NK cell-mediated antitumor control.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neoplasms , Humans , Killer Cells, Natural , Lymphocyte Activation , Programmed Cell Death 1 Receptor
17.
Nat Med ; 26(11): 1776-1787, 2020 11.
Article in English | MEDLINE | ID: mdl-32868878

ABSTRACT

An effective strategy to cure HIV will likely require a potent and sustained antiviral T cell response. Here we explored the utility of chimeric antigen receptor (CAR) T cells, expressing the CD4 ectodomain to confer specificity for the HIV envelope, to mitigate HIV-induced pathogenesis in bone marrow, liver, thymus (BLT) humanized mice. CAR T cells expressing the 4-1BB/CD3-ζ endodomain were insufficient to prevent viral rebound and CD4+ T cell loss after the discontinuation of antiretroviral therapy. Through iterative improvements to the CAR T cell product, we developed Dual-CAR T cells that simultaneously expressed both 4-1BB/CD3-ζ and CD28/CD3-ζ endodomains. Dual-CAR T cells exhibited expansion kinetics that exceeded 4-1BB-, CD28- and third-generation costimulated CAR T cells, elicited effector functions equivalent to CD28-costimulated CAR T cells and prevented HIV-induced CD4+ T cell loss despite persistent viremia. Moreover, when Dual-CAR T cells were protected from HIV infection through expression of the C34-CXCR4 fusion inhibitor, these cells significantly reduced acute-phase viremia, as well as accelerated HIV suppression in the presence of antiretroviral therapy and reduced tissue viral burden. Collectively, these studies demonstrate the enhanced therapeutic potency of a novel Dual-CAR T cell product with the potential to effectively treat HIV infection.


Subject(s)
CD4 Antigens/immunology , HIV Infections/therapy , Immunotherapy, Adoptive , Receptors, Chimeric Antigen/immunology , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Bone Marrow/immunology , Bone Marrow/virology , CD3 Complex/antagonists & inhibitors , CD4 Antigens/administration & dosage , Gene Expression Regulation/immunology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , HIV-1/immunology , HIV-1/pathogenicity , Humans , Liver/immunology , Liver/virology , Mice , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/immunology , Protein Domains/immunology , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Receptors, Chimeric Antigen/administration & dosage , T-Lymphocytes/immunology , Thymus Gland/immunology , Thymus Gland/virology , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
18.
Nat Med ; 26(9): 1339-1350, 2020 09.
Article in English | MEDLINE | ID: mdl-32895573

ABSTRACT

Therapeutic strategies are being clinically tested either to eradicate latent HIV reservoirs or to achieve virologic control in the absence of antiretroviral therapy. Attaining this goal will require a consensus on how best to measure the numbers of persistently infected cells with the potential to cause viral rebound after antiretroviral-therapy cessation in assessing the results of cure-directed strategies in vivo. Current measurements assess various aspects of the HIV provirus and its functionality and produce divergent results. Here, we provide recommendations from the BEAT-HIV Martin Delaney Collaboratory on which viral measurements should be prioritized in HIV-cure-directed clinical trials.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Disease Reservoirs/virology , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV-1/drug effects , CD4-Positive T-Lymphocytes/virology , Clinical Trials as Topic , Humans , Mass Screening/methods , Viral Load/drug effects , Virus Latency/drug effects
19.
J Immunol Methods ; 484-485: 112830, 2020.
Article in English | MEDLINE | ID: mdl-32745474

ABSTRACT

Since the FDA approval of two Chimeric Antigen Receptor (CAR) T cell therapies against CD19+ malignancies, there has been significant interest in adapting CAR technology to other diseases. As such, the ability to simultaneously monitor manufacturing criteria and functional characteristics of multiple CAR T cell products by a single instrument would likely accelerate the development of candidate therapies. Here, we demonstrate that image-based cytometry yields high-throughput measurements of CAR T cell proliferation and size, and captures the kinetics of in vitro antigen-specific CAR T cell-mediated killing. The data acquired and analyzed by the image cytometer are congruent with results derived from conventional technologies when tested contemporaneously. Moreover, the use of bright-field and fluorescence microscopy by the image cytometer provides kinetic measurements and rapid data acquisition, which are direct advantages over industry standard instruments. Together, image cytometry enables fast, reproducible measurements of CAR T cell manufacturing criteria and effector function, which can greatly facilitate the evaluation of novel CARs with therapeutic potential.


Subject(s)
Antigens, CD/immunology , Cell Proliferation , Cytotoxicity, Immunologic , Flow Cytometry , Immunotherapy, Adoptive , Leukemia, Myeloid/therapy , Microscopy, Fluorescence , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Antigens, CD/genetics , Antigens, CD/metabolism , Coculture Techniques , Humans , K562 Cells , Kinetics , Leukemia, Myeloid/immunology , Leukemia, Myeloid/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Workflow
20.
Blood ; 136(15): 1722-1734, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32614969

ABSTRACT

Chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies have rapidly emerged as a promising, novel therapy. In contrast, results from the few CAR T-cell studies for infectious diseases such as HIV-1 have been less convincing. These challenges are likely due to the low level of antigen present in antiretroviral therapy (ART)-suppressed patients in contrast to those with hematologic malignancies. Using our well-established nonhuman primate model of ART-suppressed HIV-1 infection, we tested strategies to overcome these limitations and challenges. We first optimized CAR T-cell production to maintain central memory subsets, consistent with current clinical paradigms. We hypothesized that additional exogenous antigen might be required in an ART-suppressed setting to aid expansion and persistence of CAR T cells. Thus, we studied 4 simian/HIV-infected, ART-suppressed rhesus macaques infused with virus-specific CD4CAR T cells, followed by supplemental infusion of cell-associated HIV-1 envelope (Env). Env boosting led to significant and unprecedented expansion of virus-specific CAR+ T cells in vivo; after ART treatment interruption, viral rebound was significantly delayed compared with controls (P = .014). In 2 animals with declining CAR T cells, rhesusized anti-programmed cell death protein 1 (PD-1) antibody was administered to reverse PD-1-dependent immune exhaustion. Immune checkpoint blockade triggered expansion of exhausted CAR T cells and concordantly lowered viral loads to undetectable levels. These results show that supplemental cell-associated antigen enables robust expansion of CAR T cells in an antigen-sparse environment. To our knowledge, this is the first study to show expansion of virus-specific CAR T cells in infected, suppressed hosts, and delay/control of viral recrudescence.


Subject(s)
Antigens, Viral/immunology , HIV Infections/immunology , HIV-1/immunology , Immunocompromised Host , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antiretroviral Therapy, Highly Active/adverse effects , Antiretroviral Therapy, Highly Active/methods , Disease Models, Animal , HIV Infections/drug therapy , HIV Infections/virology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Macaca mulatta , Simian Immunodeficiency Virus/immunology , T-Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...